Search results for "Nonbridging oxygen"
showing 3 items of 3 documents
In situobservation of the formation, diffusion, and reactions of hydrogenous species inF2-laser-irradiatedSiO2glass using a pump-and-probe technique
2006
We quantitatively studied the formation, diffusion, and reactions of mobile interstitial hydrogen atoms $({\mathrm{H}}^{0})$ and molecules $({\mathrm{H}}_{2})$ in ${\mathrm{F}}_{2}$-laser-irradiated silica $(\mathrm{Si}{\mathrm{O}}_{2})$ glass between 10 and $330\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. Two key techniques were used: single-pulse ${\mathrm{F}}_{2}$ laser photolysis of silanol (SiOH) groups to selectively create pairs of ${\mathrm{H}}^{0}$ and oxygen dangling bonds (nonbridging oxygen hole centers, NBOHC), and in situ photoluminescence measurements of NBOHCs to monitor their reactions with ${\mathrm{H}}^{0}$ and ${\mathrm{H}}_{2}$ as a function of time and temperature. A smalle…
Luminescence of the surface nonbridging oxygen hole center in silica: Spectral and decay properties
2008
We investigated the red luminescence in a porous film of silica nanoparticles, originating from surface nonbridging oxygen hole centers. The excitation spectrum was measured from 1.8 to 8.0 eV by a tunable laser system and a synchrotron radiation source; this spectrum evidences a peak at 2.0 eV, nearly overlapping with the emission, and an ultraviolet broadband with peaks at 4.8 and 6.0 eV. The emission is characterized by a spectrum with two subbands split by 0.07 eV, its decay occurs with lifetime longer than 30 microsec and undergoes a thermal quenching by a factor aboout 2 with increasing temperature from 10 to 290 K. The optical characteristics of surface and bulk centers are discussed…
Vibrational properties of the surface-nonbridging oxygen in silica nanoparticles
2008
By studying the site-selective luminescence spectra of oxidized silica nanoparticles we identify the electronic and the vibrational lines associated with the surface nonbridging oxygen, $\ensuremath{\equiv}{\text{Si-O}}^{\ifmmode\bullet\else\textbullet\fi{}}$. This defect emits a zero-phonon line inhomogeneously distributed around 2.0 eV with full width at half maximum of 0.04 eV, weakly coupled with the local ${\text{Si-O}}^{\ifmmode\bullet\else\textbullet\fi{}}$ stretching mode whose frequency is measured to be $920\text{ }{\text{cm}}^{\ensuremath{-}1}$. These findings are different from those of the well-characterized defect in the bulk silica thus evidencing structural peculiarities of …